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1. INTRODUCTION

The present study undertakes the task of obtaining an approximate solution of the title
problem when the plate edges are either simply supported to clamped; see Figure 1.
Apparently, no solutions are available in the open literature for the problem under analysis
[1-4] which, undoubtedly, possesses practical importance in several fields of engineering
and applied science.

Since an exact solution appears to be out of question the classical Rayleigh-Ritz method
is employed to determine the fundamental eigenvalue. Polynomial co-ordinate functions
are used for both types of boundary conditions and in the case of simply supported edges an
independent solution is found by expressing the displacement amplitude in terms of
a truncated double Fourier series. Good engineering agreement is shown to exist between
both solutions.

2. APPROXIMATE SOLUTION OF THE PROBLEM BY MEANS OF A
VARIATIONAL APPROACH

In the case of normal modes of vibration the governing functional is [2]

J(W) = Jf D1 W2 + 2D, We Wy + D22VVygz + 4D66W.v2c_y
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where

1, 0 < x{c,

h(z, y) = nh =
(X, ) = nho, i {hl/ho, (i<a
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Figure 1. Anisotropic rectangular plate of discontinuously varying thickness executing transverse vibrations:
(a) simply supported case, (b) clamped edges.

Introducing the dimensionless variables X = ax, y = by and defining A = a/b and 1. = ¢/a,
one obtains, after substitution into equation (1),
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where Q2 = phoa*w?/Dy, and
1, 0 < x{A,

h(x, y) = nhy, =
Con) =tho. {hl/ho, Felx < 1.

In the case of simply supported and clamped plates the following polynomial expression
was used in order to approximate the fundamental mode shape:

J

J J
W,=73 Cipi(x,y) = Ci(x? + 03X + ojax? 4+ a;; X)( + B3 + B2y + Biry),
=1 =1
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where “p” is Rayleigh’s optimization exponent [5] and the coefficients «j3,...,[;; are
determined substituting each polynomial co-ordinate function in the essential boundary
conditions corresponding to each mechanical configuration, i.e., simply supported or
clamped edges.

Substituting equation (3) into equation (2) and applying Ritz’ minimization condition
one obtains
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Equation (4) leads to a homogeneous linear system of equations in the C;’s which generates
a determinantal equation in the eigenvalues ;. Since

Q; = Q(p), ©)

@ 9

by minimizing it with respect to “p” one obtains an optimized value of Q;.
In the case of a simply supported plate one can also use

N N N M

Wﬂ = z Z Cnmqonm(xa y) = Z Z Cnm sin nwx sin mmy. (6)

n=1m=1 n=1m=1
Obviously, the same general procedure previously described leads to
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where ¢, = cosnnxcosmny and (p,q) =(1,1)---(N, M), and the classical algorithmic
scheme finally leads to the fundamental eigenvalue of the vibrating system.
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3. NUMERICAL RESULTS

Calculations were performed for a structural system with the following constitutive
properties:

Diy0  Dizo  Deeo 21 Diso  Dieo _ 1

DllO_DIIO_DIIO 2’ DllO_DIIO 3

On the other hand, the geometric parameters a/b, ¢/a and h, /h, were conveniently chosen as
A=3/2,1,2/3; 2, = 1/4,1/2, 3/4; n = 0-8, 0-6 respectively.

Finally, when using the polynomial co-ordinate functions J was taken equal to 4 while
N = M = 8 when performing the determination of the fundamental frequency coefficient
for the simply supported case.

Table 1 depicts values of Q; in the case of a simply supported, anisotropic plate of
discontinuously varying thickness. In general, good agreement is found between the results
obtained using polynomial and sinusoidal co-ordinate functions, the latter being considered
as more accurate since a considerably larger number of terms is used.

Table 2 deals with the clamped case. In view of the reasonable agreement found between
the eigenvalues contained in Table 1 one can hope for acceptable engineering accuracy in
the case of the results shown in Table 2.

TaBLE 1

Fundamental frequency coefficient of a simply supported anisotropic rectangular plate of
discontinuously varying thickness: (1) polynomial co-ordinate functions, (2) truncated double
Fourier series

—_
—
~

2

e n A=32 A=1 A=2/3 A=32 =1 A=2/3
0-25 0-8 25-84 17-27 12-70 25-06 16:80 12-43
06 21-54 14-57 10-61 20-78 1412 10-35
0-50 0-8 27-03 17-97 13-28 2622 17-48 13-00
0-6 23-76 1573 11-46 22-79 15-09 1104
0-75 0-8 28-47 18-94 14-15 27-64 18-44 13-86
06 2692 1792 13-48 25-52 1697 12-:80
TABLE 2

Fundamental frequency coefficient of a clamped anisotropic rectangular plate of
discontinuously varying thickness

Je n A=3/2 1 =23
025 038 4403 2963 2397
06 3711 2564 2102
050 08 46:81 3065 2436
06 4318 27-80 21-55
075 08 4979 3194 25.10

0-6 48-50 3031 2322
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